当前位置:首页 > 篮球资讯 > 正文内容

2015-2016赛季NBA赛事比分简单数据分析

杏彩体育2年前 (2023-02-03)篮球资讯64

数据来源:某数据分析QQ群(群友下载于NBA官方网站)

原始数据比较简单,依次包含了比赛日期、比赛开始时间、客队、客队得分、主队、主队得分、个人比赛数据(Box Score)、是否有加时赛、备注等。虽然数据简单,但依然有非常大的分析空间。本文为了实践之前学习的R语言相关内容,只做了一项非常简单的数据分析。

导入数据

数据为CSV文件,直接使用R语言导入CSV文件的方法。

#导入csv数据 setwd("F:/Temporary") NBA_data <- read.table("NBA_data.csv", header = TRUE, sep = ",", colClasses = c("character", "character", "character", "character", "character", "character", "character", "character"), stringsAsFactors = FALSE)

其中,第二个参数header默认为FALSE,即数据框的列名为“V1,V2...”,设置为TRUE时以CSV文件的第一行作为列名。参数sep是分隔数据的分隔符,默认为空格,可以设置为逗号(sep=,),分号(sep=;)和制表符(tab)。参数colClasses 为每一列指定一个类,为了方便处理,先将所有的数据都指定为字符型(character)。由于字符型数据在读入时自动转换为因子,所以参数stringAsFactors=FALSE是为了防止导入的数据进行任何的因子转换。

具体可查阅《R语言实战(第2版)》第二章中“2.3.2 从带分隔符的文本文件导入数据”相关内容。关于如何导入Excel数据可以参考文章【R语言】:导入Excel数据 【R语言】:简单数据处理分析

数据预处理

一、重命名列名

为了方便处理,在导入数据时保留了文件中的第一行作为列名。

首先对原始数据进行初步分析:第一列比赛日期(Date)的列名无需更改;第二列为比赛开始时间,原列名包含有英文缩写ET,推测其为美国东部时间East Time的缩写,决定把列名更改为Start_time;第三列为客场或中立球队,更改为V_team;第四列是客队得分,更改为V_PTS;第五列是主场或中立球队,更改为H_team;第六列是主队得分,更改为H_PTS;第七列是详细的个人比赛数据,应该有内链,但没有抓取到,随后删除;第八列标记了是否进行了加时赛(如果有是OT,没有为空);第九列是备注,全部为空,随后删除。

#重命名列名 names(NBA_data) <- c("Date", "Start_time", "V_team", "V_PTS", "H_team", "H_PTS", "BS", "Overtime", "Notes")

二、删除无效数据和缺失值

1、删除第七列和第九列的无效数据

#删除第七列和第九列 NBA_data <- NBA_data[, c(-7, -9)]

可参考文章:【R语言】:基本数据管理(2)

2、删除观测的缺失值

比赛日期、客队、客队得分、主队、主队得分这五个列向量为空的数据都需要删除。

#删除观测(行)的缺失值,五个列向量为空的数据都需要删除 NBA_data <- NBA_data[!is.na(NBA_data$Date),] NBA_data <- NBA_data[!is.na(NBA_data$V_team),] NBA_data <- NBA_data[!is.na(NBA_data$V_PTS),] NBA_data <- NBA_data[!is.na(NBA_data$H_team),] NBA_data <- NBA_data[!is.na(NBA_data$H_PTS),]

应该能用更简单的代码来实现,但暂时不清楚,以后遇到了再补充更改。

三、处理日期、数据类型转换、数据排序

1、处理日期

比赛日期这一列包含的内容为星期(缩写)+月(缩写)+日(数字)+年(数字),利用函数str_split_fixed()将该列拆分为星期、月日年两列。

#处理日期 library("stringr") datesplit <- str_split_fixed(NBA_data$Date, " ", n=2)

这两列数据在随后数据分析中都有用,将在分析之前再跟实际需求分别赋值到数据框中。

2、数据类型转换

将比赛分数转换为数值格式,以便于之后的相关计算。

#数据类型转换 NBA_data$V_PTS <- as.numeric(NBA_data$V_PTS) NBA_data$H_PTS <- as.numeric(NBA_data$H_PTS)

3、数据排序

此外,原始数据已经按照比赛时间的升序排列,目前暂时不变,之后将根据需要另做排序。

简单数据分析

NBA整个赛季的比赛非常多,整个赛季总共近1300场比赛。可一个赛季下来,一周7天从星期一到星期天,到底联盟更喜欢把比赛安排到哪一天呢?会是周五晚上,还是周六晚上呢?还是其他某天晚上呢?

#另存一个新数据框NBA_days NBA_days <- NBA_data #把datesplit中的第一列“星期几”全部赋值给Date列 NBA_days$Date <- datesplit[, 1]

运行代码后可得

1、统计每天比赛的数量

#周一的比赛数量 NBA_Mon <- NBA_days[NBA_days$Date == "Mon",] Mon_num <- nrow(NBA_Mon) #同理可得周二到周日的比赛数量 NBA_Tue <- NBA_days[NBA_days$Date == "Tue",] Tue_num <- nrow(NBA_Tue) NBA_Wed <- NBA_days[NBA_days$Date == "Wed",] Wed_num <- nrow(NBA_Wed) NBA_Thu <- NBA_days[NBA_days$Date == "Thu",] Thu_num <- nrow(NBA_Thu) NBA_Fri <- NBA_days[NBA_days$Date == "Fri",] Fri_num <- nrow(NBA_Fri) NBA_Sat <- NBA_days[NBA_days$Date == "Sat",] Sat_num <- nrow(NBA_Sat) NBA_Sun <- NBA_days[NBA_days$Date == "Sun",] Sun_num <- nrow(NBA_Sun)

2、新建数据框,包含星期和天数(参考【R语言】:基本数据管理(1)

#新建数据框NBA_week NBA_week <- data.frame(WeekDays = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"), WD_num = c(Mon_num, Tue_num, Wed_num, Thu_num, Fri_num, Sat_num, Sun_num))

3、2015-2016赛季NBA一周每天的比赛数量

#用函数barplot()画柱状图 P1 <- barplot(NBA_week$WD_num, width=1, space=NULL, names.arg = NBA_week$WeekDays, beside=TRUE, col=rainbow(14), col.axis="blue", col.lab="black", col.main="red", main = "2015-2016赛季NBA一周每天比赛数量", xlab="星期", ylab="比赛场次", ylim=c(0,300), axis.lty=1) #函数text()和函数minor.tick()调整文本和坐标轴刻度 text(P1, NBA_week$WD_num, NBA_week$WD_num, col = "black", pos=3) library(Hmisc) minor.tick(ny=5, tick.ratio = 0.5)

其中,关于函数text()和函数minor.tick()的详细用法可参考:【R语言】:图形初阶(3)

4、简单分析

NBA整个2015-2016赛季(包含常规赛和季后赛),在一周内周三晚上的比赛数量最多(竟然不是周末),其次是周五晚上,周一晚上和周六晚上的比赛数量一样多,并列第三。

后记

NBA的各项数据是一个非常大的数据宝藏,今天这个非常简单的数据分析的小例子,仅仅利用非常少量的数据以及非常简单的数据源。

稍微展开,就能想到更多复杂的分析,比如:

所有NBA球队常规赛(季后赛)主场(客场)平均得分(失分);

某支球队常规赛主场平均得分(失分)、客场平均得分(失分),季后赛主场平均得分(失分)、客场平均得分(失分);

某支球队常规赛(全部、主场、客场)的胜率、季后赛(全部、主场、客场)的胜率、包含加时赛(全部、主场、客场)胜率、得分(失分)上百(未上百)的比赛胜率;

某支球队周几的比赛胜率最高、几点开始的比赛胜率最高。

NBA数据几乎拥有无限多可以分析的点以及可以深挖的内容,并且NBA各支球队目前也非常重视各项数据,并且用于指导球队的技战术提升和比赛。

扫描二维码推送至手机访问。

版权声明:本文由财神资讯-领先的体育资讯互动媒体转载发布,如需删除请联系。

本文链接:http://www.tengj.cn/?id=51534

“2015-2016赛季NBA赛事比分简单数据分析” 的相关文章

原创
            蔡徐坤与JonyJ打篮球,用行动对待被黑的篮球梗

原创 蔡徐坤与JonyJ打篮球,用行动对待被黑的篮球梗

原标题:蔡徐坤与JonyJ打篮球,用行动对待被黑的篮球梗 昨日,有人偶遇了蔡徐坤和JonyJ一起打篮球,引起了网友们的关注,视频中蔡徐坤穿着白色T恤和红色的运动短裤,在高糊的镜头下也是抵挡不了的帅气,还是那个干干净净的篮球少年! 蔡...

原创
            蔡徐坤坦言:我曾经以为打篮球会是特长,后来才知道只是爱好

原创 蔡徐坤坦言:我曾经以为打篮球会是特长,后来才知道只是爱好

原标题:蔡徐坤坦言:我曾经以为打篮球会是特长,后来才知道只是爱好 对于蔡徐坤这位曾经的顶流,相信不少人都很熟悉,即便你没有认真听完过他一首歌,但是对于“唱跳rap打篮球”“鸡你太美”这些梗大概也都能倒背如流,说实话这些年他真是被黑惨了。 如果说顶流注定要被喷,那...

道滘篮球联赛直播预告 | 决战之巅!强强相争,冠军终归何处?(看直播赢奖品)

道滘篮球联赛直播预告 | 决战之巅!强强相争,冠军终归何处?(看直播赢奖品)

历经重重选拔 万众期待的篮球联赛决赛即将打响! 强强相争,冠军终归何处? 王牌对王牌,谁将笑到最后? 本周末,魅力姐将在双平台(“魅力道滘”视频号、“和美道滘”抖音号)为大家带来篮球联赛最终决赛直播! 让我们一起...

2022年11月28日NBA常规赛 76人vs魔术直播比赛前瞻分析

22-23赛季NBA常规赛持续进行中,76人vs魔术的比赛将在北京时间11月27日07:00开启。奥兰多魔术上轮不敌76人,这场比赛只有瓦格纳一人发挥不俗,而本场两队再度相遇,76人在少了两名核心的情况下,此次要想再度击败魔术的可能性虽然有,但并不高,本场看好魔术能够迎来反弹。 比...

【最新网址】港台电视,央视卫视,足球篮球直播比赛,免费看公众号

【最新网址】港台电视,央视卫视,足球篮球直播比赛,免费看公众号

不止篮球和足球, 还有各种电视直播! 港台电视, 最新电影! 热播剧集! 长按识别二维码 老球迷带你飞 一起看! 免费直播,免费影院 收集全网优质网址 一站观看更方便 一个人看比赛不过瘾,...

1天2战!CCTV直播中国三人女篮奥运首秀,决战世界第一俄罗斯争金

1天2战!CCTV直播中国三人女篮奥运首秀,决战世界第一俄罗斯争金

东京奥运会即将在7月23日晚上盛大开幕,在24日东京奥运会的比赛将会陆续开赛,其中本届东京奥运会新增添的一个比赛项目三人篮球也会在24日上午开赛,其中中国三人南女篮队伍也都会陆续亮相,这对于中国篮球来说是一次冲击奖牌甚至是金牌千载难逢的良机,因此广大中国篮球迷们也对于三人篮球的两支队伍寄予...